VNH5019 Motor Driver Module

VNH5019 Motor Driver Module

This module is a compact breakout board for ST’s high-power VNH5019 motor driver IC, a fully integrated H-bridge that can be used for bidirectional speed control of a single brushed DC motor. The basic operation of the driver is summarized below, but we also recommend careful reading of the VNH5019 datasheet (475k pdf) before using this product. The board incorporates most of the components of the typical application diagram on page 14 of the VNH5019 datasheet, including pull-up and current-limiting resistors and a FET for reverse battery protection. It ships fully populated with its SMD components, including the VNH5019, as shown in the product picture.

Features

  • Operating voltage: 5.5 – 24 V1
  • Output current: 12 A continuous (30 maximum)
  • 3V-compatible inputs
  • PWM operation up to 20 kHz, which is ultrasonic and allows for quieter motor operation
  • Current sense output proportional to motor current (approx. 140 mV/A; only active while H-bridge is driving)
  • Motor indicator LEDs (indicates what the outputs are doing even when no motor is connected)
  • Robust:
    • Reverse-voltage protection to -16 V
    • Can survive input voltages up to 41 V
    • Undervoltage and overvoltage shutdown
    • High-side and low-side thermal shutdown
    • Short-to-ground and short-to-Vcc protection

1 While the overvoltage protection typically kicks in at 27 V, it can trigger at voltages as low as 24 V, so we do not recommend using this motor driver with 24 V batteries, which significantly exceed 24 V when fully charged.

Using the Motor Driver

The motor and motor power connections are on one side of the board and the control connections are on the other side. The motor power supply connects to the large VIN and GND pins; it should be between 5.5 and 24 V and have the ability to deliver the potentially high currents the motor will require. The logic power supply (typically 2.5 – 5 V) connects to the small VDD and GND pads on the control side of the board and is used to power the internal pull-ups on the ENA and ENB enable lines. Any control input voltage above 2.1 V is guaranteed to be high, so this driver can be directly interfaced into both 3.3 and 5 V systems.

The following diagram shows the minimum connections required for interfacing this motor driver with a microcontroller:

Minimal wiring diagram for connecting a microcontroller to a VNH5019 motor driver carrier.

In this configuration, motor direction is determined by the states of the INA and INB pins and motor speed is controlled by the duty cycle of a PWM signal supplied to the driver’s PWM pin. The PWM pin is pulled low on the board, so the motor driver outputs are effectively disabled by default; the INA and INB pins are floating (they are not pulled to any particular default voltage). See the truth tables in the VNH5019A-E datasheet for more information on how the INA, INB, and PWM pins affect the driver outputs, OUTA and OUTB. Note that it is also possible to save a microcontroller I/O line by directly PWMing the INA and INB pins while holding the PWM pin high (e.g. by connecting it directly to VDD), but the trade-off is that this only works at low frequencies (a few hundred Hertz or less).

This board features motor indicator LEDs that can be used to test that motor driver outputs are working as expected before actually connecting a motor (this can be especially helpful in detecting problems due to insufficient power supplies). The LED brightness with increase with motor speed, and the LED color changes with direction.

Pinout

PINDefault StateDescription
VIN The connection point for the positive side of the 5.5 – 24 V motor power supply. Since the overvoltage protection can be as low as 24 V, we do not recommend using 24V batteries for VIN.
VDD The connection point for the positive side of the logic power supply (typically 2.5 – 5 V). The only function of this pin is to power the internal pull-ups on the two enable lines, ENA and ENB.
VOUT This pin gives you access to the motor power supply after the reverse-voltage protection MOSFET (see the board schematic below). It can be used to supply reverse-protected power to other components in the system, but it should not be used for high currents. This pin should only be used as an output.
GND Ground connection points for logic and motor power supplies. The control source and the motor driver must share a common ground.
OUTA Output of half-bridge A (connects to one terminal of a DC motor).
OUTB Output of half-bridge B (connects to the other terminal of a DC motor).
PWMLOWPulse width modulation input: a PWM signal on this pin corresponds to a PWM output on the motor outputs.
INAFLOATMotor direction input A (“clockwise” input).
INBFLOATMotor direction input B (“counterclockwise” input).
CS Current sense output. The pin voltage is roughly 140 mV per amp of output current when the CS_DIS pin is low or disconnected. The current sense reading is more accurate at higher currents. The CS pin is designed for PWM frequencies of 5 kHz or higher. If you use a PWM frequency lower than 5 kHz and want to measure the current, we recommend adding an extra capacitor between the CS pin and GND to smooth out the signal. For example, if you use a PWM frequency of 490 Hz and want to measure the current, you should add a 1 µF capacitor (or larger) between CS and GND. (Note that while the CS voltage can potentially exceed 3.3 V at high currents, the current sense circuit should be safe for use with many 3.3V analog inputs. Most MCUs have integrated protection diodes that will clamp the input voltage to a safe value, and since the CS circuit has a 10 kΩ resistor in series with the output, only a few hundred microamps at most will flow through that diode.)
ENA/DIAGAHIGHCombination enable input/diagnostic output for half-bridge A. When the driver is functioning normally, this pin acts as an enable input, with a logical high enabling half-bridge A and a logical low disabling half-bridge A. When a driver fault occurs, the IC drives this pin low and half-bridge A is disabled. This pin is connected to VDD through a pull-up resistor on the board.
ENB/DIAGBHIGHCombination enable input/diagnostic output for half-bridge B. See the description of ENA/DIAGA.
CS_DISLOWDisables the current sense output, CS, when high. Can be left disconnected in most applications.

Included Hardware

A 20-pin 0.1″ straight breakaway male header and two 2-pin 5mm terminal blocks are included with the motor driver as shown in the picture below. You can use the terminal blocks to make your motor and motor power connections, or you can break off an 8×1 section of the 0.1″ header strip and solder it into the smaller through-holes that border the four large motor and motor power pads. Note, however, that the terminal blocks are only rated for 16 A, and each header pin pair is only rated for a combined 6 A, so for higher-power applications, thick wires should be soldered directly to the board.

VNH5019 motor driver carrier with included hardware.

Soldering the 0.1″ headers to the logic connections enables use with custom cables or solderless breadboards, or wires can be soldered directly to the board for more compact installations. Motor and motor power connections should not be made through a breadboard.

The motor driver includes a 47 uF electrolytic power capacitor, and there is room to add additional capacitors (e.g. to compensate for long power wires or increase stability of the power supply). Additional power capacitors are usually not necessary, and no additional capacitors are included with this motor driver.

The two mounting holes are intended for use with #2 screws (not included).

Schematic Diagram

Schematic diagram for the Pololu VNH5019 motor driver carrier.

This schematic is also available as a downloadable pdf: VNH5019 carrier schematic (34k pdf)

Write a review

Please login or register to review
  • Views: 203
  • Product Code: VNH5019 Motor Driver Module
  • Availability: In Stock
  • KES 1,200.00

Tags: VNH5019, Motor Driver Module

Double H driver module uses  L298N dual full-bridge driver, an integrated monolithic circui..
KES 500.00
Description:  The LN298 is a high voltage, high current, dual full-bridge motor driver desig..
KES 400.00
This is essentially a ramped up version of our Ardumoto motor driver shield. For this monster shield..
KES 2,000.00
DESCRIPTIONThe VNH2SP30 Single Monster Motor Driver Module can drive motors up to 14A sustained with..
KES 900.00
Atmel's ATMega328P 8-Bit Processor is in a 28 pin DIP package. It's like the ATmega168, with do..
KES 350.00 KES 300.00
Control the flow of fluid using the flow of electrons! This liquid valve would make a great addition..
KES 3,000.00 KES 2,200.00
The DHT-22 is a low cost humidity and temperature sensor with a single wire digital interface. The s..
KES 900.00 KES 650.00
Need some indicators? We are big fans of these diffused red LEDs, in fact we use them exclusively in..
KES 100.00 KES 40.00
This is a pre-wired and waterproofed version of the DS18B20 sensor. Handy for when you need to measu..
KES 400.00 KES 300.00
OverviewSensitive to flame spectrumFeatures wide range voltage comparator LM393Adjustable sensitivit..
KES 200.00 KES 150.00

The product is currently Out-of-Stock. Enter your email address below and we will notify you as soon as the product is available.

Name
Email
Phone
Comments